Strange New Worlds of Learning

Introduction: “To explore strange new worlds…”

The past decades, and particularly the past decade, have seen a rapid development of science, technology, the economy, and society. This has dramatically changed the way we live our lives and interact with technology, and with each other, and with how pieces of technology interact with each other. These developments have generated a lot of instability, but also provide a lot of potential opportunities for those of us with expertise in structuring content for learning. Whereas personal computers were a rare luxury 40 years ago, and only really started to become a normal household item perhaps 25 years ago, most people today have several computers, and spend almost every waking minute within the orbit of some interactive computer. Every waking moment is potentially an opportunity for learning. It is a golden age of opportunity for learning professionals. The challenge is to recognize and seize it.

The learning community has embraced this to some extent in recognizing the need to build materials for mLearning on phones and tablets. Unfortunately, this is too often done superficially. Rather than designing from the start to take advantage of the unique affordances of mobile devices, it becomes a matter of “export to HTML 5” and “put it on the iPad.” But, looking on the bright side, at least there is that early recognition. Authoring tool developers have embraced the philosophy of responsive web design that adapts layout and presentation to different screen sizes and resolutions. That’s good, but only scratches the surface. We know from mobile games and virtual assistant technology like Siri/Google Now/Cortana that mobile devices go beyond simply having touch input and different screen sizes. There is speech recognition, there are accelerometer and gyroscope inputs, GPS and location awareness APIs. I haven’t seen learning applications begin to tap these capabilities. We really need to look at mobile and console gaming for lessons about the cutting edge of exciting interactivity.

Part of the problem has been the previous restrictiveness of LMSes and SCORM to be able to track learning activity. You had to log into an LMS account and take some rigidly structured eLearning piece through an LMS player in a browser if you wanted to keep track of the learning. The next generation of technology, Tin Can API / eXperience API is supposed to open this up substantially, at least according to the hype, allowing us to track pieces of learning of different types taken through different platforms in different places.  This ties in well, potentially, to ideas of informal and just-in-time learning.

Looking forward, five years down the road, ten years down the road, our challenge becomes even more daunting. We need, as learning professionals, to expand our perspectives beyond this to look at a broader set of environments. We need to recognize the full spectrum of how we interact with computers today, and how we will in the years to come. We need to fully embrace our philosophies of learning and training through continuous professional development, learning while doing, informal learning, mobile learning, and continuous learning.

This should be motivated both by our inherent desire to find new ways to teach and train people, but also by motives of professional self-preservation. A move toward more informal modes of learning, ready, ubiquitous access to quality cameras and editing software, and the availability of relatively affordable rapid authoring tools and screen capture tools make it more plausible for subject matter experts to “cut out the middle man” and build “good enough” training materials on their own. In such an environment, in many cases only minimal coaching on eLearning design principles from Instructional Designers would be needed. If we want to maintain a market for our skills, we need to be adaptive to changing realities by casting a broader net. We may also need to recall the lessons of our university studies in Human Performance Technology, and broaden our focus from training and learning to a more general approach of performance improvement and support. Giving people knowledge, skills, and support to live happier, fitter, more productive lives.

A few different areas are potential spaces to target. Some of these areas I’ve talked about before, while others I plan to break out later in separate articles. Note that these technologies are still in early stages, and may not yet be feasible as platforms for learning. But the world of technology moves increasingly quickly, and we need to look ahead and be ready if we are to seize opportunities and stay relevant.

I will speak here about three different directions:

  1. Augmented Reality and Wearables
  2. Smart TVs, gaming consoles, and the connected home
  3. In-Car Information and Entertainment Systems

Augmented Reality and Wearables

One area that looks ready to grow over the next few years is the area of augmented reality and wearable computing.

Augmented reality is a technology in which displays are aware of location, orientation in space, surroundings, and other contextual information, and use this information to display relavant details on top of the field of view. Google Glass is an example of an early effort in this area. The term is derived from the term virtual reality, with the “augmented” part getting at the idea that instead of replacing your view of reality, it adds (hopefully) relevant information on top so that you can navigate the real world but with computer aided supplementation. I talk more about the possibilities of augmented reality elsewhere.

Wearable computers are devices with sensors and input/output devices that people can wear. Two directions manufacturers are going in are watches and wristbands. Some examples are:

The beauty of wearable computers is that they go with the person everywhere, are always accessible at a glance, and are in contact with the person’s body. The devices have screens to display information, run apps, measure heartrate, in some cases take voice inputs. They can also connect to smartphones and other computers to transmit collected data and receive communication like email and other messages and receive notifications.

These could be and are being linked into fitness and health-related training, collecting information on distance travelled, heart rate over time, elevation over time, and other data, and sending that information to a data analysis program on another computer to summarize and organize the data. Notifications would also be useful for health related applications, helping give reminders on therapeutic activities or on when to take medications. Devices with a touchscreen display could also conceivably engage seniors periodically in little mental exercises to test and promote cognitive sharpness.

Conceivably, such devices could also be used for language learning and support. Something on the wrist that could respond to voice queries, perhaps through twinning to smartphone virtual assistant software, could be helpful in “live” real world situations where someone is practicing a second language.

They could also be an effective platform for performance support in a range of situations to give useful prompts. Something that is right there on your wrist is handier than a phone that needs to be taken out of the pocket. Particularly if you’re looking for support while your hands are busy.

Smart TVs, Gaming Consoles, and the Connected Home

The home also becomes a space where tech platforms will potentially be able to support seamless learning and/or performance support.

One place is on the TV, whether via smart TVs or latest generation gaming systems connected to the television. I have talked about this at some length already, particularly in respect to the Xbox One and Kinect. Again, Apple and Google are also trying to get into this space with Apple TV and Android TV.

Another type of platform that could be leveraged for learning and performance support applications is the connected home. This is related to the idea of the Internet of Things, and is about various intelligent appliances and sensors in the home linked together on a local home network, and possibly connected as well (with proper security safeguards) to the larger internet.

This is an area that is still pretty primitive, outside perhaps the sci-fi homes of tech millionaires and billionaires and certain early gimicks like internet connected thermostats. The security and interoperability challenges alone are daunting. But the vision is compelling, and it’s inevitable probably that some systems along these lines will be developed in the coming decade.

In a connected home, devices are spatially and contextually aware, always announcing their presence, always open to communications with people or other devices, and a person or multiple people is almost always relatively near. Smart software could theoretically interface between you and the embedded components, but could also manage the environment for you behind the scenes .

These could potentially be great platforms on which to deliver or facilitate learning and performance support in creative and fun ways.

The idea would be for software running on the system to keep track of you and your family and to find moments in the thick of life for you to learn and better yourself.

For example, to aid in such things as cooking and organizing an interesting meal plan for your home given your inventory, nutritional and diet goals, budget, and time/equipment available. To suggest new ingredients or new recipes using ingredients you already use a lot.

To monitor your patterns of sleeping, bring patterns of concern to your attention, and help to support you in establishing better patterns.

Or to teach people and support them in exercising and fitness. Tracking estimated calories burned, distance run/walked/biked/swum, times, and perhaps linking that into nutritional data collected. Also, providing virtual coaching assistance, suggesting new workouts and providing targetted encouragement based on psychological principles of motivation (both in terms of initiating behavior and promoting persistance).

Or to support learning and playing with the kids. For example, I can envision a future where school boards embrace technology, storing gradebook data online, with results tagged by key competencies. Home-based computer tutoring systems running on a home entertainment console in the living room connect into that via parent login credentials entered by the parent in some authentication process. The system picks up on downward trends in student performance, or troubles on some competency, if the school’s gradebook system does not. The system can then identify the children that are watching entertainment or playing games in the living room or on a computer connected into the same home wifi network and intersperse the entertainment with e-tutoring content targetting areas of current difficulty. Such software could do this for you while the parents are busy getting dinner ready. Simulataneously, the system is walking Dad through that new Thai recipe it suggested via a computer monitor / TV screen in the kitchen.

For supporting families in managing finances and suggesting ways to optimize to save money.

It will be interesting to see to what extent the work companies like Microsoft, Google, and Apple are doing with virtual assistant software (Cortana, Google Now, Siri) could be embedded in these connected home systems as a front-end interface.

Find ways to get your data and learning services connected into that experience. A mix of education and entertainment, but without mixing the two up. Make it fun and exciting, but keep to the realm of the true.


In-Car Information and Entertainment systems

Cars are being put out with increasingly sophisticated information and entertainment systems that serve purposes of safety, navigation, and entertainment. It’s not unusual for people to spend 10 hours or more in their car every week. This is a sizeable amount of time that could be leveraged for learning. People already traditionally engage in light learning activities; they listen to CBC/BBC/NPR/Sirius, they listen to audio books or TED talks, whether on a CD or from a connected smart phone. But more could be done by linking deeply into and running on top of in car systems.

Apple is trying to get into this space with CarPlay, which basically allows certain properly programmed iOS apps to have in car functionality through the in car entertainment system.  (Apple is coordinating with car manufacturers on this) Google is also doing work on extending Android to interface with in car systems.

Or, as a funny example, there was an episode of Big Bang Theory where Sheldon reprogrammed Leonard’s GPS to play Sheldon’s personal narrated sightseeing notes at key points along a route. This was a gag about Sheldon’s neuroses, but an imaginative designer could probably think of some legitimate applications along these lines. For example, a rented car in Europe could bring up historical information about landmarks and towns.

More immersive and interactive learning materials could be developed for in car learning for children, as a way to get homework out of the way on the way home from school, or to pass the time on long road trips.

How far you can take this for adults is limited currently by the fact that the driver should not be distracted from the key task of driving. But the possibilities of the car as a moving information and entertainment system will become more plausible as autonomous car technology continues to evolve.


A lot of this technology is either in the early stages or not quite ready for prime time. Nevertheless, looking at the trends, it seems clear that these are some of the major directions things are going in our ever-evolving and ever more intertwined relationship with computers. Further, the best results will come when the solutions in these different directions can interlink with each other, sharing information, so that the wearable systems talk to in-car systems talk to connected home systems.

But one step at a time. There is a lot of work to do.

To the strange and wonderful future that awaits us.

The “Just One More Episode” Effect and Learning

First of all, Happy Holidays.

There’s an interesting trend in media consumption that has come about with the advent of Netflix – binge watching. The term brings to mind colorful imagery of drug addiction, and some might argue that, to a certain extent, it’s sort of fitting. It’s firmly rooted in the culture now. Netflix bingeing. Watch an episode of a series, and if it’s crafted well, you’re ready to go on to the next one. The next thing you know, half a day is gone.

Or sometimes more:

When Netflix rolled out House of Cards in an innovative new approach where they dumped the whole season at once for streaming, their internal data indicated that at least some small number of viewers completed the season 13 hours after they started. Meaning they watched the whole thing in one continuous session.

When Breaking Bad finished last summer, Netflix and torrent sites saw huge traffic as people rushed to catch up so that they could share in the social experience. It was actually kind of interesting, sociologically, almost a return to what TV was like in simpler days when I was growing up in the 1980s.

Even my sexagenarian parents are getting into it. A few weeks ago, my folks got a new smart TV and decided to take out a Netflix trial. I suggested Mad Men as an interesting series to check out, since they came of age at about the time the series takes place. A couple of weeks ago I get a Skype message telling me they checked the first episode and liked it. Recently, I came home for a holiday visit, and this evening, they finished the fourth season.

What is it that makes us do this? What is the secret recipe?

And it works in other media too.

I was sitting with my daughter recently while she was reading to me. It was a longish book, it was getting late after a long day of holiday play, and reading in English (she is in French immersion) is still a work in progress, so she wasn’t going to finish the book that day.

She initially flipped forward a bit, and said, “I’ll read until here.” When she got there, though, she was still engrossed in the story, and said, “two more pages.” And then again, and again, a few more times, before the heavy eyelids made continuing too difficult.

I was reflecting about this, when a thought came to me. What if we could craft learning/training materials like that?

Each bite doesn’t have to be be big. In fact, shorter is good. It makes each piece less of an psychological investment. Easy to dive in for one more. But make it engaging, with each piece ending on an intriguing note, leaving you wanting more, like some weekly serial picture from the 1950s, but with that next episode not one week away, but right there in a link. It becomes easy to click “next,” and rationalize, “just one more episode.” “Just one more hit.”

We should look more carefully into how these programs we love to binge are constructed; what makes us just keep going.

And then try to apply that to instructional design.

Food for thought.

If anyone has any related food for thought, another dish to contribute to the potluck, feel free to share in the comments below. As a wise man once said, knowledge is the one thing that when we give it away, we gain it.

Making learning fit

People lead increasingly busy lives. With work, family, household maintenance, and a dozen other things, our schedules tend to fill up. In this context, it’s difficult to find time to engage our need for life-long learning. At the end of a day or week of work, it can seem overwhelming to sit for a course. The hours required can be hard to fit into a schedule. But the fact is, there is always time left in the schedule. The challenge is that we need to be creative in getting learning to fit into the schedule.

I’m reminded of an old story that you see every once in a while on Facebook or other social media. I don’t recall the exact context, but it involved a teacher making a demonstration trying to fill a jar. He started with marbles, “filling” the jar to the top until no more marbles would fit. Is the jar “full?” No. There’s plenty of space, just no more marble sized pockets.

So the teacher continues with some small beads. You pour them into the jar, and they settle into much of the spaces between the marbles. The teacher does that until the beads are level with the top of the jar. Is it full yet? No. The teacher proceeds to add sand to the jar. The sand settles into the tinier spaces between the beads.

Finally, the teacher completes the demonstration by pouring water into the jar.

So this is a nice story. What can we take from it?

Well, the fact of the matter is that we probably have hours of time each week that could be used for learning. The problem is the time is split up into little pieces between other things, 5 minutes here, 10 minutes there. As well, there are chunks of time in contexts that would not traditionally have been thought of as opportunities to access training material, for example, sitting on the couch in front of the living room TV, out walking in the street, or driving in the car.

As training designers and developers, we can direct our efforts in two major directions:

  1. Making training in smaller, bite sized chunks that will fit in easily and conveniently in spare cycles between other things
  2. Making training that can be readily accessed in non-traditional learning environments/media, including:
    a. Living room via smart TV and/or internet connected entertainment system such as a modern game system like the Xbox One or PS4
    b. Through an in-car entertainment system
    c. Through wearable computers and augmented reality

This leads to some challenges for us as designers and developers.

The first challenge requires us to think hard about how to break down training into small, focused, self-contained learning pieces that are well-indexed and findable. These will often be accessed individually as informal learning materials. Though it may be possible to prompt learners with suggestions about connected content they might find useful, depending on the Learning Management System through which users browse content.

The second challenge requires us to learn about the tools needed to develop for these other platforms, as well as the unique affordances involved in terms of interaction and navigation of the platforms.
Some of these points I have touched on previously in posts here. The others I hope to speak about in more depth in the weeks to come.

A new hobby project: Exploring with the Kinect

First of all, happy weekend.

Haven’t published any posts in a while; have a lot of drafts on the go, but nothing quite finished yet. In the meantime, I thought I’d make a quick post. It’s been a pretty good week in the Anderson household. At work, got a nice early Xmas present in the form of an offer of a full time staff position at work. (Accepted!) Which was nice. Contracting is interesting, but there’s something to be said for stability.

At home, I was happy to receive a large UPS parcel from Microsoft – a new Xbox One with Kinect.

Xbox One with Kinect Assassin's Creed Unity Bundle

I’ve been interested in the Xbox, and the Kinect in particular, for some time. I’ve written a few articles on this blog talking about the potential of Kinect and sensor technologies like it to expand the possibilities of training, and computing in general. The prospect of predictable horizons on the work front and a sweet holiday sale on the Microsoft web store helped to seal my decision to take the plunge.

So far, I’m quite pleased with the Xbox One as a product. It’s my first time buying a gaming system in about 20 years; the state of the art has definitely advanced since the days of the Sega Genesis 😉

The setup is easy and smooth. The regular controller plus the voice and gesture based interface of the Kinect allow multiple ways to get things done in terms of navigation and interaction.

The voice and gesture controls are introduced via simple tutorials. A fine example of quick, simple tutorial materials.

The voice controls work nicely. My son and I have had no trouble being understood, and the system OS includes visual cues when speech input is activated as to what commands can be made on any particular screen. It doesn’t quite understand my daughter, but she’s a little younger and missing two of her front teeth.

The gesture control is cool too, though it will take a bit of effort to get smooth and precise with it.

I also ordered the optional adapter to plug the Kinect sensor into a USB connector of a Windows computer for Kinect for Windows apps. This is a cool recent development; previously, to play with Kinect on a Windows computer, you had to buy a special $200 Kinect sensor specifically for that purpose. Allowing people to just use the sensor from their Xbox One opens things up another notch.

I’m looking forward to playing around on a hobby basis with the free Kinect For Windows SDK. Basically, if you have an Xbox One with Kinect, and you buy the adapter, the license is open for you to make Windows apps, even commercial apps, for no extra charge. Kudos to Microsoft for being smart and removing barriers to innovation and experimentation

The SDK, along with lots of guidance and tutorial material available on their website:

I’m excited to explore what sorts of interactions can be made with this technology, with an eye to training applications. In particular, the ability of the Kinect to recognize body movements, facial expressions / emotional states, and even heart rate could potentially add a lot to monitoring learners level of engagement and their performance on motor tasks.

Also on the menu is a Udemy course on Web Development I signed up for a number of weeks ago when it was on sale. (Which I hope to finally get started with over the holiday period!) Together, these two hobby projects should take up a good bit of my spare time over the coming months.

I look forward to sharing anything helpful I learn along the way.