Category Archives: Educational video

Posts about educational video

The television as a learning and training space

Introduction

Recent years have seen the world of training embracing  learning on mobile devices, or mlearning, for short. There are many reasons for this:

  1. Client demand as people more and more browse the internet principally through mobile devices
  2. Clients always having their phones with them, allowing lots of little moments during a day when learning could potentially take place.
  3. Phones having lots of sensors and input methods, allowing for innovative interactions
  4. Phones allowing multiple communciation methods

Designers and developers have been working on designs using mobile learning. At its most basic this has taken the form of  using file formats so that videos or presentations will play on a tablet, or even just an iPad. Or to make the training as an iPad app or playable within some container app.

Others, approaching the matter with some semblance of actual seriousness, have gotten more creative, and tailored training more to the unique affordances of smart phones and tablets. They make learning games that use sensors or activities that use sensors as inputs for motion or touch based interactions. Or they use location information. Others use ideas of informal learning and performance support to break training into small, focused little pieces that can be accessed in a spare moment.

eLearning authoring tool providers advertise their tools as enabling responsive eLearning. They hype the promise of being able to publish content to multiple media and device types, for desktop, tablet, and mobile.

This is good for learning and training. However, in this focus on mobile, we may be losing sight of possibly the next key development of web-based learning and training – the television as a learning and training space.

Television as a new window to Internet content and learning

Sitting on a couch with a tablet is a nice way to watch  a video or presentation. The device is light and comfortable. But, still, it’s a 10 inch screen. It is nice for portability, but it’s still a small screen. The small size is a compromise, trading visibility and real estate for portability.

But across from the couch is what? The TV. Big screen – 30, 40, 50, 60 inches. 1080p HD, easy to see, nice to watch, decent speakers. And you don’t have to hold anything.

Television used to be a box on which we watched traditional television programs, whether delivered over the air, or through cable or satellite broadcast. Then, came VHS players, DVD, Blu-ray, video game consoles. The living room TV became instead the screen in the middle of a home entertainment center.

Now, increasingly, televisions are also becoming just another one of the screens,albeit, much bigger ones, through which to access internet content, whether for entertainment, work, or learning. This takes the form of video, audio, text, and apps. The long promised fusing of internet and television has arrived, with several different options available to make this possible.

Many TVs are now “smart TVs,” combining a TV with a computer. These TVs are WiFi enabled, with built in interfaces and platforms with apps capability. Apps allow straightforward connectivity to content sources like Youtube, Netflix, digital music streaming services, and other streaming media.

Modern TV screens also allow for stereoscopic 3D. While no longer a faddish selling point, most newer TVs are by market standard capable of displaying stereoscopic 3D content, whether accessed over the web or on 3D Blu-rays. TVs stand out notably from the other screens through which we consume content in that many of them today readily allow Stereoscopic 3D media. TVs are the one dependable 3D screen that people commonly own.

TVs are also capable of being connected to gaming systems like PS4 and Xbox One, the second of which includes the Xbox Kinect motion and voice sensor. These systems, while meant primarily for gaming, are also intended more generally for home entertainment, with app platforms and apps like Netflix and Youtube to see internet video content.

As well, set top boxes like Apple TV as well as many WiFi enabled Blu-ray players offer a similar bridge between the television and the internet.

Tablets, phones, and laptops can share screens wirelessly to TVs, either through devices like Apple TV, game systems, or via Miracast / WiDi from enabled devices.

It is easy to get content on the TV. As well, the TV will either be setup with sensors, whether in the TV itself or via something like an Xbox, or the person will be screen sharing from something which has sensors and a touch based control interface. It becomes easier to browse, select, and interact with online content shown on the TV.

Designers, both web designers an instructional designers,  need to think about training and learning possibilities in this space.  just as they should be thinking about that OTHER class of displays that will also be more and more in people’s lives – wearables and augmented/virtual reality tech such as Google Glass and Oculus Rift. (More on this in a future post)

Challenges

There are a few challenges in this area:

Platforms

One main challenge is that there are so many different sorts of configurations and ways to connect the internet to the TV:

  • Via game consoles such as XBox One or Sony PS4
  • Smart TVs
  • Set top boxes like Apple TV, Wifi Blu-ray player, or Chromecast
  • Computer connected to the TV to share the screen via HDMI cable
  • Wireless screencast from laptop, tablet, or smartphone to the TV, whether through Apple Airplay or up and coming wireless screencasting standards WiDi (wireless direct) and Miracast.

This makes things difficult for developers, as there is no one clear dominant target for development.

The gaming consoles, which have positioned themselves as not only gaming platforms, but home entertainment hubs, may be one promising avenue, as the multi-billion dollar gaming industry already attracts lots of skilled developers to these platforms. Microsoft’s XBox One in particular runs an operating system related to Windows and uses the same development toolkit. Also, these gaming consoles offer innovative ways to interact with the content on the TV through different types of controller devices. These include body movement and voice based controls. The gaming console option offers interesting possibilities in terms of innovative learning interactions.

A more straightforward, elegant solution may be through smart TVs, where everything is in one box. This would especially be the case if in the future the telvision included sensors that could be turned on for Kinect-like interaction with cameras and microphones. One challenge, however, is attracting developers to different platforms from different manufacturers. Possibly only a company like Samsung, which is involved in manufacturing phones, tablets, computers, and TVs would be in a strong position to carry over advances in interfaces and interactivity from other devices to TVs. Or someone like Apple.

The other challenge would be emotional reactions from consumers. When early press about the Xbox One suggested that the system would require the Kinect sensor – which includes stereo cameras and microphones – to always be on, even when the system is not in use, people became very paranoid, and there was a backlash.

It is possible that TVs will evolve in coming years to become a sort of all-in-one computer, with web connection, innovative web browsing methods (the concept of adaptive web design will also have to adapt and evolve to cater to TV as a screen), app platforms, and built in SSD memory space, possibly supplemented by cloud storage.

Quite possibly the next stage of the Apple OS – Android – Windows – Linux battles will be fought on the battlefield of internet connected TVs. Ubuntu, for example (A variant of the Linux operating system) has actually been positioning itself as a flexible multiplatform, including TV – OS for some time.

Wireless screen sharing may be the simplest approach, making the smartphone, tablet, or PC the central point of control of what appears on the TV screen. Desktop and laptop computers would have limits though in terms of enabling learning interactions.

Tablets and smartphones, could potentially allow for interesting learning interactions through the accelerometer, gyroscope, and touch sensors.

The scene is probably going to be messy for a few years with a lot of options making it hard for developers to pick. This will make it hard to form development communities that will drive things explosively forward.

Interface and Interactivity

The possibilities for learning and training will depend somewhat on the options available for interactivity. One of the challenges in making the TV a hub for learning content is how the user can control and navigate content sitting or standing from across the room. Good eLearning and online training especially requires rich interactions.

But how do you interface with the TV? A computer you sit right there and control it via mouse and keyboard, and to a lesser extent, microphone and camera. A tablet or smartphone you tap it, swipe it,  turn it, talk to it, because again, you’re up close to it and it fits in your hands.

TV is different. You sit back from it, or stand back from it. You’re not going to stand at your TV tapping the screen like those big maps on CNN election night.

There are probably four major options:

  1. Some modification of a traditional TV remote, possibly one with a touchscreen and accelerometer/gyroscope sensors
  2. Some camera and microphone based sensor like the MS Kinect that lets you control via voice and body gesture
  3. Controlling through a laptop computer, tablet, or smartphone, which shares the screen wirelessly via WiDi, Miracast, or Apple Airplay and lets you control things via touchscreen and motion sensors. The TV simply becomes a screen to mirror content on the other device.
  4. A smartphone or tablet is paired with the TV via an app, and serves as a WiFi-connected touch- and motion-based controller.

All of these could probably be made to work, though options 2 and 4 are probably the most plausible options going forward in terms of usability and in terms of building on existing platforms.

 

Learning and Training Possibilities

The matter then becomes how to harness this emerging new portal to the internet for learning an training.

A few possibilities come to mind.

  • Any passive consumption of video content. Particularly content in HD or stereoscopic 3D format. YouTube contet, for example. A TV would be the most natural and comfortable way to watch. Everything becomes bigger and more lifelike
  • Educational gaming activities using a gaming controller
  • Web content browsing with voice and gesture inputs enabled by something like the Kinect. Say, for example, a view of different documents or different levels of detail making use of different focal planes in a 3D field of view. This allows information and screen elements to be arranged not just along dimensions of horizontal and vertical, but by depth as well.
  • Interaction with stereoscopic 3D models using Kinect sensor. Such as chemical structures, architectural structures, geographic feature models of an area, or components of equipment.
  • Live, synschronous, life-like teleconferencing via TVs and Kinect sensors using apps like Skype or something like it embedded in a virtual classroom application. Virtual classroom would work very well on an HD television with connected camera and microphone. For live, face to face communications, for conversational practice in language learning, or a live virtual tutoring session.
  • Using the Kinect, the learner practices some psychomotor skill. At the same time, the Kinect camera lets a remote instructor watch the performance and comment. The Kinect could also capture data to assist in analyzing biomechanics.

These are a few sample ideas. Maybe readers can think of others.

 Conclusion

The past six years have seen dramatic changes with the coming into the mainstream of mobile devices as a new space for online learning, with unique affordances for interactivity. The mobile web and mLearning have expanded our horizons for entertainment and learning. The television, connected to the internet offers a new field on which we can ply our craft as designers and developers. It’s a developing field with a lot of options that will take some time to sort out and settle down. But for those of us tasked with helping our clients and students to learn and develop, it’s a field we would do well not to ignore.


 

Once again, feel free to share your comments, either below, or via social media.

An idea whose time has come? Reusable Learning Objects.

Introduction: A brief history of learning objects

When I was in school in the early 2000s, one of the trendy ideas in the field of educational technology was reusable learning objects (RLOs). Learning objects were a heavily promoted idea in the 1990s and early 2000s. The idea came out of US military-funded training research, focused on two goals:

  • To standardize multiple, mutually incompatible eLearning formats used by vendors to the armed forces so as to improve inter-operability of training content, and
  • To design materials using small, self-contained, meta-tagged modules to enable reuse and thus reduce development time and cost.

The name “learning object” comes from the computer paradigm of object-oriented programming, where small, self-contained code structures model objects and entities in the real world, their properties and their inner structures, and their interaction between objects and entities. This was a paradigm allowing faster development through modular design, re-usable libraries of code, and encapsulation of object data within the objects.

Learning objects try to carry some of this success from software design and development to the design and development of eLearning.

What is a learning object?

A learning object is a short learning piece, usually digital, from a few minutes up to as much as an hour in length, though usually on the shorter side. The learning piece is focused on one learning objective. It will generally include an introduction, explanation and/or demonstration, activities for the learner for practice and / or consolidation, and an assessment. It is an irreducible element of knowledge, an atomic nugget of learning.

It was expected that eLearning objects would use a standard format such as SCORM for metadata attached to the objects. This would enable the learning object to be interoperable with different delivery platforms (LMS).  The idea was for the object to represent instruction for a small nugget of content related to a specific objective.

The purpose of this was to enable re-use of training materials for faster, more efficient development of future content. Usually, when we want to reuse a body of training content as part of a new course, we need to break apart the old course, extract useful bits, and then assemble what you want back together in a cohesive fashion.

The idea with the learning objects is that they represent some small sort of smallest learning objectives. The related objects are already broken down. All that is left when building a new course is to identify what you need to teach, finding out what is already built, evaluate it, and then either re-use or re-purpose the content.

To maximize this re-usability, the learning object is supposed to be as free of specific context (audience, place, type of organization, etc) as possible. For example, if multiple audiences would want to study toward this objective, media or examples used should not be limited to only one audience.

New courses could, in theory, be built by collecting, and sequencing various learning objects, with an overall introduction and conclusion and some linkages to join it all together.

Critiques of the Learning Object concept

While learning objects were a trendy topic in the -90s and -00s, the idea was not without its critics.

There are several critiques of the learning object concept:

  • The idea of learning objects was pushed primarily by the military and for its own concerns of operational efficiency and cost savings rather than any sense that it would produce more better learning. The concerns are quantity of output and efficiency rather than quality of education
  • The idea mainly focuses on eLearning, and specifically eLearning for one solitary self-paced learner. Where social sorts of learning involving cooperation and collaboration fits within this was not clear
  • If context is removed, it is harder for learners to relate to it on a concrete level. Media and graphics and examples are generic, or some wide range. The media and examples don’t speak closely to their particular reality. As such, you risk losing the attention and motivation of the learner, because they may not see the relevance clearly.
  • If context is removed, it is harder for learners to make meaningful connections between the content and other content unless the developer puts in extra effort to put this connective material back in. Statements like, “as you remember from module 1,” or, “you will learn more about this in the coming module,” or “this is related to these other topics” would be mostly removed from learning objects to maximize reusability. Learning these sorts of connections is an important part of learning new material, and is part of what makes new learning stick together cohesively in the learner’s mind.
  • When assembling courses from smaller learning objects, it is not a matter of just sticking together lego blocks or assembling IKEA furniture. Remember that all that context that serves as a connective tissue of sorts for the objects has been stripped away to allow the reuse. To make it most effective, you need to add contextual glue/mortar in between the pieces to improve flow and relevance. This cancels a lot of the time savings that are advertised.

Disillusionment…

So up through the early and mid 2000s there was a lot of hype about learning objects, When I was in my Educational Technology program at that time, the concept was talked about, and readings were given, including critiques of the concept. Some large companies, schools, and educational networks did a lot of work in this field, with some of these projects still continuing. But the idea never took off broadly as advertised.

eLearning continued to gain broader acceptance in the academy and in industry. SCORM standards for eLearning content metadata and inter-operability went forward and became commonly used standards supported by authoring tools and Learning Management Systems. eLearning authoring tools became increasingly sophisticated, allowing simple eLearning to be developed more and more efficiently.

But the strict learning object idea did not continue to be top of mind for practitioners, who grew disillusioned by the concept as they experienced the limitations and difficulty, witnessed lots of bad eLearning content, and found the time savings and re-usability to be much less in practice than advertised.

The term learning object faded from common conversation.

In the meantime…

Life went on, technology advanced. Broadband internet became more widespread with faster speeds. This allowed easier upload and download of multimedia content, even video content.

The Web 2.0 era of user generated content came about. PHP discussion boards. Wikipedia. Youtube. Social media like Facebook. Question and answer sites like eHow and Quora. A Web where content could easily be generated by users, tagged for search, and uploaded.

This was furthered with the mainstreaming of mobile internet devices. The iPhone 3G appeared in 2008. The explosion of the smartphone market followed. This led to a proliferation of mobile apps on sophisticated pocket computers with cameras, microphones, and other sensors. Tablet computing went mainstream, with the iPad in 2010. With these mobile devices came touch based computing and context aware computing. The widespread rollout and development of high speed mobile networks enabled voice, audio, and video transmission. Smart, small, lightweight connected mobile devices mean that the user almost always has on hand.

In the field of educational technology and training, there is an increasing emphasis on informal learning such as job aids, performance support systems, and just-in-time learning.

Finally, eLearning authoring tools have become much more user friendly, making it easier for experts to build their own content and distribute it. This broadens the development pool and makes it easier to generate content.

All of these developments and change have come over the past ten years. We start to see a very different landscape from what it was when this learning objects concept originally peaked and then faded in the early 2000s.

When you look at all these developments together, and reflect, you start to wonder if maybe that old idea of learning objects might have renewed relevance in today’s environment.

 

So what’s changed?

So putting it together, what is different today?

Cell phones and inexpensive but powerful recording equipment let us easily record content. Easy to use authoring software lets us easily assemble media into small but meaningful packets of learning material. Ubiquitous network connections and sharing features in apps let us easily upload content from almost anywhere.

Platforms like Youtube, Soundcloud, Facebook, and others give us a place to upload and organize content, share it with others, see what others have shared, and further pass content along to others.

To keep up with the rapid pace of the age, these pieces of content are short and focused. In line with trends in informal learning and continuous learning, a lot of learning materials are posted on these sorts of platforms and on company intranets, so learners can access brief, relevant material as needed on the job rather than taking a formal course. There is also the trend in microlearning, focusing on short learning pieces of a few minutes in length.Short learning pieces also work better with the usage patterns of smartphones

Responsive web design and responsive eLearning design allow content to be developed once, hosted in one location, and accessible from different devices, at any time, wherever the learner may be.

New standards technologies such as TinCan API/xAPI make it easier and more flexible to track learning on materials accessed and hosted in different locations and in a wider variety of different formats.

Conclusion:

And so we see a lot of elements of this original vision of learning objects being realized thanks to these many separate factors coming together.

And though it is a concept that has its valid criticisms, learning objects may offer an interesting an useful model to help manage and guide this new world of content production and sharing.

The earlier discussions of 10-15 years ago may give useful insight as to how to design, structure, and build short content. As well, it may guide us as to how to meta-tag, store, and search for these materials. And, finally, these earlier discussions may give us insights into how to repurpose and combine these learning pieces into larger, cohesive learning experiences, both online and blended learning, for both individuals and groups.

 

Thoughts?

 

Additional Links

http://www.reusability.org/read/

http://edutechwiki.unige.ch/en/Learning_object

On hobbyist drones and video filming

I came across the following video on Facebook the other day. It’s a video from an 18 year old in Nancy, France, filming the beauty of his home town. What intrigued and amazed me, as someone who has worked in the aviation industry for about six years is how this video was filmed – with a drone helicopter. Check it out:

When we think of drones, or unmanned aerial vehicles (UAVs) the first image to come to mind is usually the drones being used in Yemen and Afghanistan by the US ilitary to perform reconnaissance and to bomb people by remote control from the other side of the world. Such is the world of big military drones like the Predator.

But this technology, as technology often does, has also filtered down to the civilian realm in the form of smaller, much less expensive devices. Drones are finding use in police, fire, and rescue, giving a cheap, flexible, and safe (no pilot) way to perform aerial surveillance and reconnaissance.

The following documentary from Motherboard (VICE News) talks about applications of drones, both military (surveillance and attack) and civilian.

On the civil side, applications of unmanned aerial vehicle technology includes drones both for organizations and for hobbyists.The hobbyist space is a very interesting development, and is the type of drone used by the French teenager to film the beauty of his home town (And get into some hot water with the French aviation authorities – http://hypervocal.com/news/2014/teen-drone-summons/ ).

There are very lightweight (About 1 kg), affordable drone models meant for the hobbyist crowd, with some models in the neighborhood of $500 – accessible to almost anyone determined to save up the money. For some, this is a simple extension of the older tradition of RC aircraft. But with the development of cheap, lightweight cameras such as the GoPro line so popular with extreme athletes, this technology suddenly blows the doors wide open to aerial photography and filming.

With $1000 and enough hours of practice, anyone could potentially reproduce, to the extent allowed by camera quality, the kinds of sweeping, graceful aerial shots that normally require expensive crane equipment or aircraft rentals to film. Such a dramatic lowering of the bar to entry for such types of video could allow applications to educational video content. Basically, if you can operate the drone with the needed level of accuracy, you can get the shot you want. The only limit is your talent and imagination.

What are your thoughts? What kind of educational or training applications could you see for this technology, whether as a way to film instructional video, or as a teaching tool to show sights we usually would not see? Please leave your comments below.